Mechanisms of embryonal tumor initiation: distinct roles for MycN expression and MYCN amplification.

نویسندگان

  • Loen M Hansford
  • Wayne D Thomas
  • Joanna M Keating
  • Catherine A Burkhart
  • Anne E Peaston
  • Murray D Norris
  • Michelle Haber
  • Patricia J Armati
  • William A Weiss
  • Glenn M Marshall
چکیده

The mechanisms causing persistence of embryonal cells that later give rise to tumors is unknown. One tumorigenic factor in the embryonal childhood tumor neuroblastoma is the MYCN protooncogene. Here we show that normal mice developed neuroblast hyperplasia in paravertebral ganglia at birth that completely regressed by 2 weeks of age. In contrast, ganglia from MYCN transgenic (TH-MYCN) mice demonstrated a marked increase in neuroblast hyperplasia and MycN expression during week 1. Regression of neuroblast hyperplasia was then delayed and incomplete before neuroblastoma tumor formation at 6 and 13 weeks in homo- and hemizygote mice, respectively. Paravertebral neuronal cells cultured from perinatal TH-MYCN mice exhibited 3- to 10-fold resistance to nerve growth factor (NGF) withdrawal, compared with normal mice. Both low- and high-affinity NGF receptors were expressed in perinatal neuroblast hyperplasia but not in neuroblastoma tumor tissue. MYCN transgene amplification was present at low levels in perinatal neuroblast hyperplasia from both homo- and hemizygote TH-MYCN mice. However, only in hemizygous mice did tumor formation correlate with a stepwise increase in the frequency of MYCN amplification. These data suggest that inappropriate perinatal MycN expression in paravertebral ganglia cells from TH-MYCN mice initiated tumorigenesis by altering the physiologic process of neural crest cell deletion. Persisting embryonal neural crest cells underwent further changes, such as MYCN amplification and repression of NGF receptor expression, during tumor progression. Our studies provide a model for studying perinatal factors influencing embryonal tumor initiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ODC1 is a critical determinant of MYCN oncogenesis and a therapeutic target in neuroblastoma.

Neuroblastoma is a frequently lethal childhood tumor in which MYC gene deregulation, commonly as MYCN amplification, portends poor outcome. Identifying the requisite biopathways downstream of MYC may provide therapeutic opportunities. We used transcriptome analyses to show that MYCN-amplified neuroblastomas have coordinately deregulated myriad polyamine enzymes (including ODC1, SRM, SMS, AMD1, ...

متن کامل

ID2 expression is not associated with MYCN amplification or expression in human neuroblastomas.

MYCN is a biologically and clinically important oncogene in human neuroblastoma as genomic amplification reliably predicts for aggressive tumor behavior and a poor prognosis. However, the mechanism by which MYCN amplification and overexpression contributes to a highly malignant phenotype remains obscure. ID2 is a dominant inhibitor of the RB1 tumor suppressor gene product and recently was sugge...

متن کامل

Sensitivity to cdk1-inhibition is modulated by p53 status in preclinical models of embryonal tumors

Dysregulation of the cell cycle and cyclin-dependent kinases (cdks) is a hallmark of cancer cells. Intervention with cdk function is currently evaluated as a therapeutic option in many cancer types including neuroblastoma (NB), a common solid tumor of childhood. Re-analyses of mRNA profiling data from primary NB revealed that high level mRNA expression of both cdk1 and its corresponding cyclin,...

متن کامل

MYCN-directed centrosome amplification requires MDM2-mediated suppression of p53 activity in neuroblastoma cells.

The MYC family oncogenes cause transformation and tumor progression by corrupting multiple cellular pathways, altering cell cycle progression, apoptosis, and genomic instability. Several recent studies show that MYCC (c-Myc) expression alters DNA repair mechanisms, cell cycle checkpoints, and karyotypic stability, and this is likely partially due to alterations in centrosome replication control...

متن کامل

A mouse model of MYCN-driven retinoblastoma reveals MYCN-independent tumor reemergence.

The most frequent focal alterations in human retinoblastoma are mutations in the tumor-suppressor gene retinoblastoma (RB) and amplification of the oncogene MYCN. Whether MYCN overexpression drives retinoblastoma has not been assessed in model systems. Here, we have shown that Rb inactivation collaborates strongly with MYCN overexpression and leads to retinoblastoma in mice. Overexpression of h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 34  شماره 

صفحات  -

تاریخ انتشار 2004